Vì \(A=\overline{2009abc}⋮315\)
nên c=0 hoặc c=5
TH1: c=0
=>(a,b)=(0;7) hoặc (a,b)=(7;0) để A chia hết cho 9
TH2: c=5
=>(a,b)=(3;8) để A chia hết cho 9
\(\left(a,b,c\right)\in\left\{\left(0;7;0\right);\left(3;8;5\right);\left(7;0;0\right)\right\}\)
Vì \(A=\overline{2009abc}⋮315\)
nên c=0 hoặc c=5
TH1: c=0
=>(a,b)=(0;7) hoặc (a,b)=(7;0) để A chia hết cho 9
TH2: c=5
=>(a,b)=(3;8) để A chia hết cho 9
\(\left(a,b,c\right)\in\left\{\left(0;7;0\right);\left(3;8;5\right);\left(7;0;0\right)\right\}\)
Tìm giá trị của k biết rằng:
a) k=\(\frac{\overline{ab}}{\overline{abc}}=\frac{\overline{bc}}{\overline{bca}}=\frac{\overline{ca}}{\overline{cab}}\)
b) k= \(\frac{\overline{abc}}{\overline{ab}+c}=\frac{\overline{bca}}{\overline{bc}+a}=\frac{\overline{cab}}{\overline{ca}+b}\)
Tìm giá trị K:
\(K=\frac{\overline{a}\overline{b}}{\overline{a}\overline{b}\overline{c}}=\frac{\overline{b}\overline{c}}{\overline{b}\overline{c}\overline{a}}=\frac{\overline{c}\overline{a}}{\overline{c}\overline{a}\overline{b}}\)
\(K=\frac{\overline{a}\overline{b}\overline{c}}{\overline{a}\overline{b}+c}=\frac{b\overline{c}\overline{a}}{\overline{b}\overline{c}+a}=\frac{\overline{c}\overline{a}\overline{b}}{\overline{c}\overline{a}+b}\)
PLEASE HELP ME !!! Mik đang cần gấp
Tìm các số a,b,c,d biết rằng \(a,\overline{ad},\overline{cd},\overline{abcd}\) là các số chính phương
Hãy tìm các chữ số a,b,c,d biết các số a,\(\overline{ad},\overline{cd},\overline{abcd}\)đều là các số chính phương.
Cho a,b,c đôi một khác nhau và khấc 0. Biết \(\overline{ab}\) là số nguyên tố và \(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}\)
Tìm só \(\overline{abc}\)
CHO BIẾT \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
CHỨNG MINH RẰNG \(a=b=c\)
1/ Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng minh rằng: S không phải là số chính phương
2/ Tìm các số có ba chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương.
3/ Tìm 3 số tự nhiên a, b, c (a > b > c > 0), biết rằng: \(\overline{abc}+\overline{bca}+\overline{cab}=666\)
Bài 1: Tìm \(\overline{abcde}\), biết
1) \(\sqrt{\overline{abcde}}\) = 5e + 1
2) \(\sqrt{\overline{abcde}}\) = \(\left(ab\right)^3\)
Bài 2: Cho a, b>0: \(a^{2012}\)+ \(b^{2012}\) = \(a^{2013}\)+\(b^{2013}\)=\(a^{2014}\)+\(b^{2014}\)
Bài 3: Tìm a, b, c: a.( a + b + c ) = \(-\dfrac{1}{24}\)
c.( a + b + c ) = \(-\dfrac{1}{72}\)
b.( a + b + c ) = \(\dfrac{1}{16}\)
(cứu mih với ạ uhuhuhu)
\(\overline{ABBC}=7.\overline{AB}.\overline{AC}\)
TÌM A,B,C