\(M=\frac{a^2-2a+2008}{a^2}\)
\(M=\frac{a^2}{a^2}-\frac{2a}{a^2}+\frac{2008}{a^2}\)
\(M=1-\frac{2}{a}+\frac{2008}{a^2}\)
\(M=1-2\cdot\frac{1}{a}+2008\cdot\left(\frac{1}{a}\right)^2\)
Đặt \(\frac{1}{a}=x\)
Ta có :
\(M=1-2x+2008x^2\)
\(M=2008\left(x^2-x\cdot\frac{1}{1004}+\frac{1}{2008}\right)\)
\(M=2008\left(x^2-2\cdot x\cdot\frac{1}{2008}+\frac{1}{2008^2}+\frac{2007}{2008^2}\right)\)
\(M=2008\left[\left(x-\frac{1}{2008}\right)^2+\frac{2007}{2008^2}\right]\)
\(M=2018\left(x-\frac{1}{2008}\right)^2+\frac{2007}{2008}\ge\frac{2007}{2008}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2008}\)