Để đây là hàm số bậc nhất thì a+1>0
hay a>-1
Để đây là hàm số bậc nhất thì a+1>0
hay a>-1
cho hàm số \(y=f\left(x\right)=4x+1-\sqrt{3}\cdot\left(2x+1\right)\)
a) chứng tỏ rằng hàm số này là hàm số bậc nhất, đồng biến
b)tìm x để \(f\left(x\right)=0\)
Cho hàm số y=f(x)=\(4x+1-\sqrt{3}\left(2x+1\right)\)
a) Chứng tỏ rằng hàm số trên là hàm số bậc nhất đồng biến
b) Tìm x để f(x)=0
\(y=\left(\sqrt{x}+1\right)^2+\left(m-1\right)\left(\sqrt{x}-1\right)^2-m\left(\sqrt{x}+3\right)\)
Tìm m để hàm số sau là hàm số bậc nhất. Khi đó hàm số là đồng biến hay nghịch biến?
1) cho hàm số bậc nhất y=\(\sqrt{m-1}\) -6x+5 tìm m để hàm số đã cho là hàm số bậc nhất và nghịch biến
2) cho hàm số bậc nhất y=\(\left(m^2-m+1\right)x+m\) chứng minh với mọi giá trị của m,hàm số đã cho là hàm số bậc nhất và đồng biến
cho hàm số bậc nhất y=F(x)=\(\left(\sqrt{3}-1\right)\) X+1
a) hàm số trên là đồng biến hay nghịch biến trên R
b)tính các giá trị F(0);F\(\left(\sqrt{3}+1\right)\)
Cho hàm số y=f(x) = \(6x-1-\sqrt{5}\left(2x-1\right)\)
Chứng tỏ hàm số trên là hàm số bậc nhất và hàm số đồng biến trên R
Tìm a,b để hàm số \(y=a\left(x+1\right)^2+b\left(x+2\right)^2\) là hàm số bậc nhất
Cho hàm số y=f(x)=\(6x-1-\sqrt{5}\left(2x-1\right)\)
Chứng tỏ hàm số trên là hàm số bậc nhất và hàm số đồng biến trên R
cho hàm số y=f(x)=4x+a-√3 (2x+1)
a, chứng tỏ rằng hàm số là hàm số bậc nhất đồng biến
b, tìm x để f(x)=0