\(A\cdot\left(1-\dfrac{1}{4}\right)\cdot\left(1-\dfrac{1}{9}\right)\cdot\left(1-\dfrac{1}{16}\right)\left(1-\dfrac{1}{25}\right)=1\dfrac{3}{5}\)
=>\(A\cdot\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{5}\right)=\dfrac{8}{5}\)
=>\(A\cdot\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot\dfrac{6}{5}=\dfrac{8}{5}\)
=>\(A\cdot\dfrac{1}{5}\cdot\dfrac{6}{2}=\dfrac{8}{5}\)
=>\(A\cdot3=8\)
=>A=8/3