\(=\dfrac{x+9-4x+x-3}{x\left(x-3\right)}=\dfrac{-2x+6}{x\left(x-3\right)}=\dfrac{-2\left(x-3\right)}{x\left(x-3\right)}=-\dfrac{2}{x}\)
\(\dfrac{1}{x-3}+\dfrac{9-4x}{x^2-3x}+\dfrac{1}{x}=\dfrac{1}{x-3}+\dfrac{9-4x}{x\left(x-3\right)}+\dfrac{1}{x}=\dfrac{x}{x\left(x-3\right)}+\dfrac{9-4x}{x\left(x-3\right)}+\dfrac{x-3}{x\left(x-3\right)}=\dfrac{x+9-4x-x+3}{x\left(x-3\right)}=\dfrac{-4x+12}{x\left(x-3\right)}=\dfrac{-4\left(x-3\right)}{x\left(x-3\right)}=\dfrac{-4}{x}\)