Thực hiện phép tính : \(\dfrac{8+i}{1+2i}\)
Tính: \(I=\int\dfrac{dx}{\sqrt{\left(x+1\right)\left(x+2\right)}}\)
RÚT GỌN BIỂU THỨC:
17) \(A = \left(\dfrac{\sqrt{x} - 1}{3\sqrt{x} - 1} - \dfrac{1}{3\sqrt{x} + 1} + \dfrac{8\sqrt{x}}{9x - 1}\right) : \left(1 - \dfrac{3\sqrt{x} - 2}{3\sqrt{x} + 1}\right)\)
Trong mặt phẳng Oxy, gọi A là điểm biểu diễn số phức z thỏa mãn:\(\left(1-2i\right)z-\dfrac{2-i}{1+i}=\left(3-i\right)z\) . Tọa độ trung điểm I của OA là
A: I \(\left(\dfrac{1}{20};\dfrac{7}{20}\right)\)
B: I \(\left(\dfrac{1}{5};\dfrac{7}{5}\right)\)
C:I \(\left(\dfrac{1}{10};\dfrac{7}{10}\right)\)
D:I \(\left(\dfrac{1}{16};\dfrac{7}{16}\right)\)
Thực hiện các phép tính sau: (-1 + i)(3 + 7i)
\(Chox,y>0\)
\(\log_{\sqrt{3}}\left[\dfrac{2x+y}{4x^2+y^2+2xy+2}\right]=2x\left(2x-3\right)+y\left(y-3\right)+2xy\)
Tính \(P_{Max}=\dfrac{6x+2y+1}{2x+y+6}\)
Cho 2 số thực dương x,y thỏa mãn \({\left( {x + y} \right)^3} + x + y + {\log _2}\dfrac{{x + y}}{{1 - xy}} = 8{\left( {1 - xy} \right)^3} - 2xy + 3\) Tính giá trị nhỏ nhất của biểu thứ
P = x + 3y |
A. \(\dfrac{{1 + \sqrt {15} }}{2}.\)
B. \(\dfrac{{3 + \sqrt {15} }}{2}.\)
C.\(\sqrt {15} - 2.\)
D. \(\dfrac{{3 + 2\sqrt {15} }}{6}.\)
Thực hiện các phép tính sau: 3+2i+(6+i)(5+i)
Bài 1. Thực hiện các phép toán sau:
a/ (3+4i)+(-1+5i)
b/ (3-4i)-(1-5i)
c/ (-3+4i)+(1-4i)
d/ (3-5i)-(4+i)
Bài 2. Thực hiện các phép toán sau:
a/ (3+4i)(-1+5i)
b/ (3-5i)-(4+i)