a: \(A=\dfrac{3}{2}x^2+6x+3\)
b: \(B=5xy-\dfrac{2}{3}xy+\dfrac{1}{2}x^2y+2x^2y=\dfrac{5}{2}x^2y+\dfrac{13}{3}xy\)
a) \(2x^2+x-\dfrac{1}{2}x^2+5x+3\)\(\)
= \(\left(2x-\dfrac{1}{2}x^2\right)+\left(x+5x\right)+3\)
= \(\dfrac{3}{2}x^2+6x+3\)
Vậy A = \(\dfrac{3}{2}x^2+6x+3\)