bình phương 2 vế lên
\(\Leftrightarrow\) \(\left(\left|x1-x2\right|\right)^2=\left(x1-x2^2\right)=\left(x1+x2\right)^2-4.1.2\)
thay từ ht vi - ét
bình phương 2 vế lên
\(\Leftrightarrow\) \(\left(\left|x1-x2\right|\right)^2=\left(x1-x2^2\right)=\left(x1+x2\right)^2-4.1.2\)
thay từ ht vi - ét
Cho n số thực \(x_1;x_2;x_3;...;x_n\left(n\ge3\right)\)
\(CMR:max\left\{x_1;x_2;x_3;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Cho PT: \(x^2-x-3m-2\)
a) Tìm m PT có nghiệm kép. Tìm nghiệm kép khi đó.
b) Tính \(\left(x_1+x_2\right)^2-3x_1x_2.\)
c) Tính \(\left(x_1+x_2\right)^2.\)
d) Tính \(\left(x_1\right)^2\left(x_2\right)^2.\)
e) Tính \(\left(x_1\right)^3+\left(x_2\right)^3.\)
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19\\ \Leftrightarrow\left(5-2m-2x_1-x_2+2m-3\right)\left(5-2m-2x_2-x_1+2m-3\right)=19\)
Giải thích giúp em vì sao ạ :((
Gọi \(x_1;x_2\)là hai nghiệm của phương trình : \(x^2-2kx-\left(k-1\right)\left(k-3\right)=0\).Khi đó \(\frac{1}{4}\left(x_1+x_2\right)^2+x_1.x_2-2\left(x_1-x_2\right)=....\)
cho pt bậc 2: \(x^2-2\left(m-1\right)x-6=0\) có 2 nghiệm phân biệt \(x_1,x_2\) với \(x_1< x_2\) sao cho \(\left|x_1\right|=\left|x_2\right|-5\)
giúp mk vs
Cho ptr x2-2(m+1)x-m-5=0 Tìm m để ptr có 2 nghiệm x1,x2 thỏa mãn \(\left(x_1-x_2\right)^2-x_1\left(x_1+3\right)-x_2\left(x_2+3\right)=-4\)
Gọi \(x_1,x_2\)là hai nghiệm của phương trình \(x^2-2kx-\left(k-1\right)\left(k-3\right)=0\)
Khi đó giá trị của \(\frac{1}{4}\left(x_1+x_2\right)^2+x_1.x_2-2\left(x_1+x_2\right)\)
`x^2 -(m+1)x+m=0`
tìm m để pt có 2 nghiệm `x_1 , x_2` thỏa mãn \(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)
Biết \(4x^2-2x-1=0\) có 2 nghiệm `x_1 ,x_2`. Tính giá trị \(A=\left(x_1-x_2\right)^2-x_1\left(x_1-\dfrac{1}{2}\right)\)