Đáp án D
Cứ 2 điểm k liền kề nhau sẽ tạo thành 1 đường chéo. Vậy số đường chéo là:
C 10 2 − 10 = 45 − 10 = 35
Đáp án D
Cứ 2 điểm k liền kề nhau sẽ tạo thành 1 đường chéo. Vậy số đường chéo là:
C 10 2 − 10 = 45 − 10 = 35
Thập giác lồi (10 cạnh) là một đa giác có bao nhiêu đường chéo?
A. 36
B. 45
C. 25
D. 35
Đa giác lồi 10 cạnh có bao nhiêu đường chéo?
A. 35
B. 10
C. 45
D. 20
Cho một hình thập giác lồi. Hỏi có thể lập được bao nhiêu tam giác có các đỉnh là đỉnh của thập giác lồi, nhưng các cạnh không phải là cạnh của thập giác lồi
A. 100
B. 25
C. 45
D. 50
Một đa giác lồi có 10 đỉnh. Chọn ngẫu nhiên ba đỉnh của đa giác và nối chúng lại với nhau ta được một tam giác. Tính xác suất để tam giác thu được có ba cạnh là ba đường chéo của đa giác đã cho.
A. 11 12
B. 1 4
C. 3 8
D. 5 12
Cho một đa giác lồi 10 cạnh. Có tất cả bao nhiêu tam giác mà đỉnh trùng với đỉnh của đa giác lồi?
A. A 10 3
B. 3 10
C. 10 3
D. C 10 3
Cho một đa giác lồi 10 cạnh. Có tất cả bao nhiêu tam giác mà đỉnh trùng với đỉnh của đa giác lồi?
A. A 10 3
B. 3 10
C. 10 3
D. C 10 3
Cho một đa giác lồi (H) có 10 cạnh. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó là ba đỉnh của (H), nhưng ba cạnh không phải ba cạnh của (H)
A. 40
B. 100
C. 60
D. 50
Cho đa giác lồi 10 cạnh. Có bao nhiêu tam giác được tạo thành từ các đỉnh của đa giác đã cho?
A. A 10 3
B. 3 10
C. C 10 3
D. 3 10 .
Cho đa giác lồi (H) có 22 cạnh. Gọi X là tập hợp của các tam giác có 3 đỉnh là ba đỉnh của (H). Chọn ngẫu nhiên hai tam giác trong X. Tính xác suất để chọn được 1 tam giác có 1 cạnh là cạnh của đa giác (H) và 1 tam giác không có cạnh nào là cạnh của đa giác (H) (Kết quả làm tròn đến số thập phân thứ ba)
A. 0,374
B. ,0375
C. 0,376.
D. 0,377