\(A^2=8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}+2.\sqrt{\left(8+2\sqrt{10+2\sqrt{5}}\right)\left(8-2\sqrt{10+2\sqrt{5}}\right)}\)
\(A^2=16+2.\sqrt{8^2-\left(2\sqrt{10+2\sqrt{5}}\right)^2}=16+2.\sqrt{24-8\sqrt{5}}=16+4.\sqrt{6-2\sqrt{5}}\)
\(A^2=16+4.\sqrt{\left(\sqrt{5}-1\right)^2}=16+4.\left(\sqrt{5}-1\right)=12+4\sqrt{5}\)
=> A = \(\sqrt{12+4\sqrt{5}}=\sqrt{2}\sqrt{6+2\sqrt{5}}=\sqrt{2}.\left(\sqrt{5}+1\right)=\sqrt{10}+\sqrt{2}\)