\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}\\ =\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{2}.\sqrt{4}-\sqrt{2}.\sqrt{5}}{2-\sqrt{5}}\\ =\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}\\ =\dfrac{1}{\sqrt{2}+1}-\sqrt{2}\\ =\dfrac{1-\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\\ =\dfrac{1-2-\sqrt{2}}{\sqrt{2}+1}\\ =\dfrac{-\sqrt{2}-1}{\sqrt{2}+1}\\ =\dfrac{-\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\\ =-1\)
\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}=-1+\sqrt{2}-\sqrt{2}=-1\)