\(D\ge1\forall x,y\)
Dấu '=' xảy ra khi x=3 và y=-3
\(D\ge1\forall x,y\)
Dấu '=' xảy ra khi x=3 và y=-3
Tìm x
\(a,3-x=x+1,8\)
\(b,2x-5=7x+35\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(k,7x^2-11=6x^2-2\)
\(m,5\left(x+3.2^3\right)=10^2\)
\(n,\dfrac{4}{9}-(\dfrac{1}{6^2})=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
a, \(\text{[}\left(x-y\right)^3+3\left(x-y\right)\text{]}:\dfrac{1}{3}\left(x-y\right)\)
b, \(\left(8x^3-27y^3\right):\left(2x-3y\right)\)
c, \(\text{[}5\left(x+2y\right)^6-6\left(x+2y\right)^5\text{]}:2\left(x+2y\right)^4\)
Thu gọn các đơn thức trong biểu thức đại số sau:
C = \(\dfrac{7}{9}x^3y^2.\dfrac{6}{11}axy^3+-5bx^2y^4.-\dfrac{1}{2}axz+ax.\left(x^2y\right)^3\)
D = \(\dfrac{\left(3x4y^3\right)^2.\left(\dfrac{1}{6}x^2y\right)+\left(8x^{n-9}\right).\left(-2x^{9-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)}\) ( với axyz khác 0)
\(b,\dfrac{x}{2}-\left(\dfrac{3x}{5}-\dfrac{13}{5}\right)=-\left(\dfrac{7}{5}+\dfrac{7}{10}.x\right)\)
\(c,\dfrac{2x-3}{3}+\dfrac{-3}{2}=\dfrac{5-3x}{6}-\dfrac{1}{3}\)
\(d,\dfrac{2}{3x}-\dfrac{3}{12}=\dfrac{4}{5}-\left(\dfrac{7}{x}-2\right)\)
\(e,2\left(x-1\right)=\left(x-1\right)^2\)
Bài 1:
a) |2x - 3| - \(\dfrac{1}{3}\)= 0
b) \(\dfrac{5}{6}-\left|x+\dfrac{1}{4}\right|=\dfrac{1}{4}\)
c) \(\left|2x-1\right|-\left|x+\dfrac{1}{3}\right|=0\)
d) \(3x-\left|x+15\right|=\dfrac{5}{4}\)
Bài 2:
a) A= 1,3 + 2,5
b) B= -4,3 - 13,7 + (-5,7) - 6,3
c) C= 25.(-5).(-0,4).(-0,2)
d) D=|11,4 - 3.4| + |12,4 - 15,5|
\(\left(3-x\right)^3=-\dfrac{27}{64};\left(x-5\right)^3=\dfrac{1}{-27};\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8};\left(2x-1\right)^2=\dfrac{1}{4};\left(2-3x\right)^2=\dfrac{9}{4};\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
Thu gọn đơn thức, tìm bậc, hệ số, biến
A = \(x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right)
\)
B = \(\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right)\)
tính giá trị của biểu thức
a) \(A=2x^2-\dfrac{1}{3}y,t\text{ại}x=2;y=9\)
b) \(P=2x^2+3xy+y^2t\text{ại }x=-\dfrac{1}{2};y=\dfrac{2}{3}\)
c) \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)t\text{ại}x=2;y=\dfrac{1}{4}\)
Tính:
a, \(\dfrac{1}{2}xy^5\left(-ab^2\right)^2\left(-x^3z^7\right)\) với a;b là hằng số
b, \(-x^3y+\dfrac{1}{2}x^3y-\dfrac{3}{4}x^3y\)
c, \(4x^2+\dfrac{1}{2}x-7-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)
d, \(\left(-3xy^2\right)^5.\left(-x^3y^6\right)\)