Bài 12: Cho tứ giác ABCD. Xác định điểm M, N, P sao cho
a) 2 vecto MA + vt MB = vt MC = vt 0
b) vt NA + vt NB + vt NC + vt ND = vt 0
c) 3 vt PA + vt PB + vt PC + vt PD = vt 0
Cho tan giác ABC đều cạnh a, I là điểm trên cạnh BC sao cho BC = 3BI và J là trung điểm của AB.
a) Tính |vecto AB + vecto AC|
b) Chứng minh vecto AI = 2/3vecto AB + 1/2vecto AC.
c) Gọi M là điểm thoả : 3vecto MA + vecto MB - 2vecto MC = vecto 0.
d) Gọi N là điểm thoả : |vecto NA + vecto NB| = |vecto NB + vecto NC. Chứng minh điểm N thuộc một đường thẳng cố định.
giúp mình với ạ :((
Cho HBH ABCD, M tùy ý. Chứng minh rằng:
a, MA + MC = MB + MD ( đều là vecto nha)
b, AB - BC = DB ( đều là vecto)
c, DA - DB + DC = 0 ( đều là vecto)
Cho tam giác ABC
a. Gọi điểm M thỏa hệ thức vecto MA + vecto MB - vecto MC = vecto BC. Chứng minh M cố định
b. Chứng minh có duy nhất điểm N thỏa mãn 2 vectoNA - vecto NB + vecto NC = vecto CA
Cho tam giác ABC lấy các điểm M, N, P sao cho vectơ MB - 2 véctơ MC =vectơ NA + 2vectơ NC =vectơ PA +vectơ PB = vectơ O
a. Tính vecto PM, PN theo hai vectơ AB và AC
b. CMR: ba điểm M, N, P thẳg hàg
Cho tam giác ABC. Gọi M,N, P lần lượt là trung điểm của AB, BC, CD. Trong các mệnh đề sau, hãy chọn mệnh đề sai:
A. Vecto AM + Vecto AP= Vecto AN
B.Vecto MB+ Vecto NB= Vecto PB
C.Vecto BA+ Vecto BC = Vecto BP
D.Vecto CP+ Vecto NB= Vecto CM
Cho tam giác ABC, tìm quỹ tích điểm M thỏa mãn:
a) \(\left|\overrightarrow{MA}+\overrightarrow{BC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
b) \(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{4MB}-\overrightarrow{MC}\right|\)
c) \(\left|\overrightarrow{4MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{2MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
(Sử dụng kiển thức về tích của hai vecto)
cho tứ giác lồi ABCD . CM vecto AB+CD= vecto AD+BC
AB-CD=AC-BD
b) E,F,O lll trung điểm AB,CD,EF.CM vecto OA+OB+OC+OD=0
c) M bất kì cmr vecto MA+MB+MC+MD=4MO
d) giả sử 2 dg chéo AC,BD cắt nhau tại I cho vecto IA+IB+IC+ID=0.CM ABCD là hình bình hành
2. CHO HÌNH BÌNH HÀNH ABCD CÓ O LÀ GIAO ĐIỂM CỦA AC VÀ BD CHỨNG MINH RẰNG
A, VỚI MỌI ĐIỂM M TA CÓ VECTO MA + VECTO MB + VECTO MC + VECTO MD = 4VECTO MO
B, VECTO AB+ 2VECTO AC + VECTO AD = 3VECTO AC
5. CHO ĐOẠN THẲNG AB VÀ ĐIỂM I SAO CHO 2VECTO AI + 3VECTO IB = VECTO 0
TÌM K SAO CHO VECTO AI = K VECTO AB