Tìm tất cả các giá trị của tham số thực m để phương trình m 2 - 3 m + 2 x + m - 1 = 0 có nghiệm thực duy nhất.
A. m ≠ 1 m ≠ 2
B. m ≠ 1
C. m ≠ 2
D. m ≠ 1 hoặc m ≠ 2
Cho phương trình 4 x - 2 x + m + 1 + 3 m + 1 = 0 ( 1 ) Biết rằng m là tham số thực sao cho 9m là số nguyên thỏa mãn 9 m < 10 Có tất cả bao nhiêu giá trị m để phương trình (1) có nghiệm duy nhất
A. 9
B. 10
C. 19
D. 20
Tất cả các giá trị thực của m để bất phương trình ( 3 m + 1 ) 18 x + ( 2 - m ) 6 x + 2 x < 0 có nghiệm đúng ∀ x > 0 là
A. ( - ∞ ; 2 )
B. - 2 ; - 1 3
C. - ∞ ; - 1 3
D. ( - ∞ ; - 2 ]
Cho hàm số y = f ( x ) = a x + b c x + d có đồ thị như hình bên.
Tất cả các giá trị thực của tham số m để phương trình |f(x)|=m-1 có duy nhất một nghiệm là
A. m=0
B. m=2
C. m=2 hoặc m=1
D. m=1
Cho bất phương trình 9 x + ( m - 1 ) 3 x + m > 0 ( 1 ) . Tìm tất cả các giá trị của tham số m để bất phương trình (1) nghiệm đúng ∀ x > 1
A. m ≥ - 3 2
B. m > - 3 2
C. m > 3 + 2 2
D. m ≥ 3 + 2 2
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Cho hàm số y = f ( x ) = a x 4 + b x 2 + c ( a ≠ 0 ) có đồ thị như hình bên. Tất cả các giá trị của m để phương trình f x + m + 1 = 0 có 7 nghiệm phân biệt là:
A. m = -2
B. m = -1
C. m = 2
D. m = 0
Tìm tập tất cả các giá trị của tham số m để phương trình có nghiệm
log 2 2 sin x - 1 + log 1 2 cos 2 x + m = 0
A. [ - 5 2 ; + ∞ )
B. - 1 2 ; 2
C. - 1 2 ; + ∞
D. ( - 1 2 ; 2 ]
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3