Chọn C.
Phương pháp: Viết điều kiện xác định và giải điều kiện đó.
Chọn C.
Phương pháp: Viết điều kiện xác định và giải điều kiện đó.
Cho các phát biểu sau
(1) Đơn giản biểu thức M = a 1 4 - b 1 4 a 1 4 + b 1 4 a 1 2 + b 1 2 ta được M = a - b
(2) Tập xác định D của hàm số y = log 2 ln 2 x - 1 là D = e ; + ∞
(3) Đạo hàm của hàm số y = log 2 ln x là y ' = 1 x ln x . ln 2
(4) Hàm số y = 10 log a x - 1 có đạo hàm tại mọi điểm thuộc tập xác định
Số các phát biểu đúng là
A. 6
B. 1
C. 3
D. 4
Tập xác định của hàm số y = l n ( x - 2 - x 2 - 3 x - 10 ) là
A. 5 ≤ x ≤ 14
B. 2 < x < 14
C. 2 ≤ x < 14
D. 5 ≤ x < 14
Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405
Tập xác định D của hàm số y = x − 2 − 5 là
A. D = ℝ \ 2 .
B. D = ℝ .
C. D = 2 ; + ∞ .
D. D = 2 ; + ∞ .
Tập xác định của hàm số y = ln ( x 2 + 1 x 2 - 2 ) là
A . R { - 1 ; 0 ; 1 } .
B. (0;1).
C . R \ { 0 } .
D . ( 1 ; + ∞ ) .
Cho hàm số y = ( x - 2 ) - 1 2 Bạn Toán tìm tập xác định của hàm số bằng cách như sau:
Bước 1: Ta có y = 1 ( x - 2 ) 1 2 = 1 x - 2
Bước 2: Hàm số xác định ⇔ x - 2 > 0 ⇔ x > 2
Bước 3: Vậy tập xác định của hàm số là D = ( 2 ; + ∞ )
Lời giải trên của bạn toán đúng hay sai? Nếu sai thì sai ở bước nào?
A. Bước 3
B. Bước 1
C. Đúng
D. Bước 2
Cho các mệnh đề sau đây:
(1) Ta có biểu thức sau log 3 x + 5 + log 9 x - 2 2 - log 3 x - 1 = log 3 x + 5 x - 2 x - 1 2
(2) Hàm số log 3 x - 3 2 có tập xác định là D = R.
(3) Hàm số y = log a x có đạo hàm ở tại mọi điểm x > 0 .
(4) Tập xác định D của hàm số y = 2 x - 1 + ln 1 - x 2 là: D = 1 2 ; 1 .
(5) Đạo hàm của hàm số y = 2 x - 1 + ln 1 - x 2 là 1 2 x - 1 - 2 x 1 - x 2 .
Hỏi có bao nhiêu mệnh đề đúng:
A. 2
B. 4
C. 3
D. 5
Tìm tập xác định D của hàm số y = x 2 − x − 2 − 3
A. D = − ∞ ; − 1 ∪ 2 ; + ∞
B. D = ℝ \ − 1 ; 2
C. D = ℝ
D. D = 0 ; + ∞
Tìm tập xác định D của hàm số y = x 2 + x - 2 - 3
A. D = 0 ; + ∞
B. D = - ∞ ; - 2 ∪ 1 ; + ∞
C. D = R\{-2;1}
D. D = R