Cho các mệnh đề sau đây:
(1) Ta có biểu thức sau log 3 x + 5 + log 9 x - 2 2 - log 3 x - 1 = log 3 x + 5 x - 2 x - 1 2
(2) Hàm số log 3 x - 3 2 có tập xác định là D = R.
(3) Hàm số y = log a x có đạo hàm ở tại mọi điểm x > 0 .
(4) Tập xác định D của hàm số y = 2 x - 1 + ln 1 - x 2 là: D = 1 2 ; 1 .
(5) Đạo hàm của hàm số y = 2 x - 1 + ln 1 - x 2 là 1 2 x - 1 - 2 x 1 - x 2 .
Hỏi có bao nhiêu mệnh đề đúng:
A. 2
B. 4
C. 3
D. 5
Cho hàm số y = f(x) xác định trên tập D ⊂ R . Mệnh đề nào sau đây là đúng?
A. Điểm cực trị của hàm số là điểm x 0 ∈ D mà khi đi qua nó, đạo hàm f'(x) đổi dấu
B. Điểm cực trị của hàm số là điểm x 0 ∈ D sao cho f ' x 0 = 0
C. Điểm cực trị của hàm số là điểm x 0 ∈ D thỏa mãn hàm số đổi chiều biến thiên khi đi qua nó
D. Điểm cực trị của hàm số là điểm x 0 ∈ D sao cho f x 0 là giá trị lớn nhất hoặc nhỏ nhất của hàm số trên tập D .
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Xét bốn mệnh đề sau:
1 : Hàm số y = s inx có tập xác định là R
2 : Hàm số y = c osx có tập xác định là R
3 Hàm số y = tan x có tập xác định là R
4 Hàm số y = cot x có tập xác định là R
Tìm số phát biểu đúng.
A. 3
B. 2
C. 4
D. 1
Hàm số y = log 2 ( 4 x - 2 x + m ) có tập xác định là D = R khi
A. m ≤ 1 4
B. m < 1 4
C. m > 1 4
D. m ≥ 1 4
Cho hàm số y = f(x) =(ax+b)/(cx+d)(a,b,c,d ϵ R;c ≠ 0;d ≠ 0) có đồ thị (C). Đồ thị của hàm số y = f’(x) như hình vẽ dưới đây. Biết (C) cắt trục tung tại điểm có tung độ bằng 2. Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là
A. x – 3y +2 = 0
B. x + 3y +2 = 0
C. x – 3y - 2 = 0
D. x + 3y -2 = 0
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c ∈ R ; a > 0 và d > 2018 a + b + c + d - 1018 < 0 .
Số cực trị của hàm số y=|f(x)-1018| bằng
A. 3
B. 2
C. 1
D. 5
Xác định một hàm số f(x) thỏa mãn các điều kiện sau
(i). f(x) có tập xác định là D = R ∖ 4
(ii). lim x → 4 f x = + ∞ lim x → + ∞ f x = 3 và lim x → + ∞ f x = 3
A. f x = 3 x 2 x - 4 2
B. f x = 3 x 2 + 1 x - 4
C. f x = 3 - x 2 x - 4 2
D. f x = x - 3 x 2 x - 4 2
Hàm số y = l o g 2 ( 4 x - 2 x + m ) có tập xác định D = R khi
A. m > 1 4
B. m > 0
C. m ≥ 1 4
D. m < 1 4
Cho hàm số y=f(x) xác định, có đạo hàm trên R thỏa mãn f 2 ( - x ) = ( x 2 + 2 x + 4 ) f ( x + 2 ) và f ( x ) ≠ 0 , ∀ x ∈ R . Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=2 là
A. y=-2x+4.
B. y=2x+4.
C. y=2x.
D. y=4x+4.