Tập nghiệm của bất phương trình 3 . 9 x - 10 . 3 x + 3 ≤ 0 có dạng S = [ a;b ]. Tính giá trị của b - a
A. 1
B. 3 2
C. 2
D. 5 2
Cho phương trình 4 - x - a . log 3 x 2 - 2 x + 3 + 2 - x 2 + 2 x . log 1 3 2 x - a + 2 = 0 . Tập tất cả các giá trị của tham số a để phương trình có 4 nghiệm x 1 ; x 2 ; x 3 ; x 4 thỏa mãn là (c;d). Khi đó giá trị biểu thức T = 2 c + 2 d bằng:
A. 5
B. 2
C. 3
D. 4
Gọi S = (a;b) là tập tất cả các giá trị của tham số thực m để phương trình log 2 m x − 6 x 3 + log 1 2 − 14 x 2 + 29 x − 2 = 0 có 3 nghiệm phân biệt. Khi đó hiệu H = a - b bằng
A. 5 2 .
B. 1 2 .
C. 2 3
D. 5 3
Gọi S = a ; b là tập tất cả các giá trị của tham số thực m để phương trình log 2 m x − 6 x 3 + log 1 2 − 14 x 2 + 29 x − 2 = 0 có 3 nghiệm phân biệt. Khi đó hiệu H = b - a bằng
A. 5 2
B. 1 2
C. 2 3
D. 5 3
Cho phương trình 2 log 4 2 x 2 - x + 2 m - 4 m 2 + log 1 2 x 2 + m x - 2 m 2 = 0 . Biết rằng S = a ; b ∪ c ; d , a < b < c < d là tập hợp các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x 1 , x 2 thỏa x 1 2 + x 2 2 > 1 . Tính giá trị biểu thức A = a + b + 5c + 2d
A. A = 1
B. A = 2
C. A = 0
D. A = 3
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Bất phương trình:
x + 4 x + 1 − 2 x 2 x 2 + 3 ≥ 6 x 2 − 3 x − 3
có tập nghiệm là a ; b . Giá trị của 2a+b là
A. 0
B. 1
C. -1
D. 2
Tập tất cả các giá trị của tham số m để phương trình m 1 + x + 1 - x + 3 + 2 1 - x 2 - 5 = 0 có đúng hai nghiệm thức phân biệt là một nửa khoảng (a;b] . Tính b - 5 7 a
A. 6 - 5 2 7
B. 6 - 5 2 35
C. 12 - 5 2 25
D. 12 - 5 2 7
Bất phương trình x 2 - 2 x + 3 - x 2 - 6 x + 11 > 3 - x - x - 1 có tập nghiệm là ( a ; b ] . Hỏi hiệu b – a có giá trị bằng bao nhiêu?
A. b – a = 1.
B. b – a = 2.
C. b – a = -1.
D. b – a = 3.