Chọn C.
Phương pháp: Biến đổi đẳng thức đã cho.
Cách giải: Giả sử
Vậy tập hợp tất cả các điểm biểu diễn số phức z thỏa mãn điều kiện z - i = 2 - 3 i - z là một đường thẳng.
Chọn C.
Phương pháp: Biến đổi đẳng thức đã cho.
Cách giải: Giả sử
Vậy tập hợp tất cả các điểm biểu diễn số phức z thỏa mãn điều kiện z - i = 2 - 3 i - z là một đường thẳng.
Cho số phức z thỏa mãn điều kiện |z|=3 Biết rằng tập hợp tất cả các điểm biểu diễn số phức w = 3 - 2 i + ( 2 - i ) z là một đường tròn. Bán kính của đường tròn đó là
A. R = 3 2
B. R = 3 5
C. R = 3 3
D. R = 3 7
Cho số phức z thỏa mãn điều kiện z = 3 . Biết rằng tập hợp tất cả các điểm biểu diễn số phức w = 3 - 2 i + 2 - i z là một đường tròn. Hãy tính bán kính của đường tròn đó.
A. 3 5
B. 3 2
C. 3 7
D. 3 3
Xét các số phức z thỏa mãn z - 1 = 1 + i z . Biết rằng tập hợp tất cả các điểm biểu diễn số phức w = 1 + 2 i z + 2 là một đường tròn, đường tròn đó tiếp xúc với đường thẳng nào dưới đây?
A. d 1 : 3 x + y - 1 = 0
B. d 1 : x - 3 y - 3 = 0
C. d 1 : 3 x - y - 1 = 0
D. d 1 : x + 3 y + 3 = 0
Cho các số phức z thỏa mãn z + 1 - i = z - 1 + 2 i . Tập hợp các điểm biểu diễn số phức z là một đường thẳng. Viết phương trình đường thẳng đó
A. 4x+6y-3=0
B. 4x+6y+3=0
C. 4x-6y+3=0
D. 4x-6y-3=0
Cho các số phức z thỏa mãn z - i = z - 1 + 2 i . Tập hợp các điểm biểu diễn số phức w = ( 2 - i ) z + 1 trên mặt phẳng tọa độ là một đường thẳng. Phương trình đường thẳng đó là
A. x - 7 y - 9 = 0
B. x + 7 y - 9 = 0
C. x + 7 y + 9 = 0
D. x - 7 y + 9 = 0
Cho số phức z thỏa mãn z + 3 - i z ¯ + 1 + 3 i là một số thực. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường thẳng. Khoảng cách từ gốc tọa độ đến đường thẳng đó bằng:
B. 0.
B. 0.
C. 2 2
D. 3 2
Tập hợp các điểm M biểu diễn số phức z thỏa mãn điều kiện z - 2 + z + 2 = 6 là đường elip E . Phương trình đường elip E là
A. x 2 5 + y 2 4 = 1
B. x 2 9 + y 2 5 = 1
C. x 2 9 + y 2 4 = 1
D. x 2 36 + y 2 5 = 1
Tập hợp tất cả các điểm biểu diễn số phức z thỏa mãn 2 z − i = 6 là một đường tròn có bán kính bằng:
A. 3
B. 6 2
C. 6
D. 3 2
Cho các số phức z thỏa mãn |z+1-i|=|z-1+2i|. Tập hợp các điểm biểu diễn các số phức z trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó
A. 4x+6y-3= 0
B. 4x-6y-3=0
C. 4x+6y+3=0
D. 4x-6y+3=0
Cho số phức z thay đổi hoàn toàn thỏa mãn: z − i = z − 1 + 2 i . Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = 2 − i z + 1 là một đường thẳng. Viết phương trình đường thẳng đó.
A. − x + 7 y + 9 = 0.
B. x + 7 y − 9 = 0.
C. x + 7 y + 9 = 0.
D. x − 7 y + 9 = 0.