Cho các số phức z thỏa mãn z - i = z - 1 + 2 i . Tập hợp các điểm biểu diễn số phức w = ( 2 - i ) z + 1 trên mặt phẳng tọa độ là một đường thẳng. Phương trình đường thẳng đó là
A. x - 7 y - 9 = 0
B. x + 7 y - 9 = 0
C. x + 7 y + 9 = 0
D. x - 7 y + 9 = 0
Cho số phức z thỏa mãn z + 3 - 4 i = 5 . Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức z là một đường tròn. Tim tọa độ tâm I và bán kính R của đường tròn đó.
A. I 3 ; - 4 , R = 5
B. I - 3 ; 4 , R = 5
C. I 3 ; - 4 , R = 5
D. I - 3 ; 4 , R = 5
Cho số phức z thỏa mãn z + 3 − 4 i = 5. Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức z là một đường tròn. Tìm tọa độ tâm I và bán kính R của đường tròn đó.
A. I 3 ; − 4 , R = 5 .
B. I − 3 ; 4 , R = 5 .
C. I 3 ; − 4 , R = 5.
D. I − 3 ; 4 , R = 5.
Cho các số phức z thỏa mãn |z+1-i|=|z-1+2i|. Tập hợp các điểm biểu diễn các số phức z trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó
A. 4x+6y-3= 0
B. 4x-6y-3=0
C. 4x+6y+3=0
D. 4x-6y+3=0
Cho số phức z thay đổi hoàn toàn thỏa mãn: z − i = z − 1 + 2 i . Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = 2 − i z + 1 là một đường thẳng. Viết phương trình đường thẳng đó.
A. − x + 7 y + 9 = 0.
B. x + 7 y − 9 = 0.
C. x + 7 y + 9 = 0.
D. x − 7 y + 9 = 0.
Cho số phức z thỏa mãn: z = 4 . Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = 3 + 4 i z + i là một đường tròn có bán kính là:
A. 4
B. 5
C. 20
D. 22
Xét các điểm số phức z thỏa mãn z ¯ + i z + 2 là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn số phức z là một đường tròn có bán kính bằng:
A. 1.
B. 5 4
C. 5 2
D. 3 2
Xét các số phức z thỏa mãn z ¯ - 2 i z + 2 là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng?
A. 2 2
B. 2
C. 2
D. 4
Tập hợp các điểm trong mặt phẳng tọa độ biểu diễn số phức z thỏa mãn điều kiện 2 z − i = z − z ¯ + 2 i là hình gì?
A. Một đường Elip
B. Một đường tròn
C. Một đường thẳng
D. Một đường Parabol