Chứng minh các đẳng thức :
a) sin3x = 3sinx - 4sin3x
b) tan 2x + 1/cos2x = 1-2sin2x/1-sin2x
c) (cosx+sinx/cosx-sinx) - (cosx-sinx/cosx+sinx) = 2tan 2x
d) sin2x/1+cos2x = tanx
e)
cho sinx+cosx bằng \(\frac{1}{5}\). Tính sinx, cosx, tanx, cotx
cho tanx = -1. tính giá trị biểu thức P = \(\frac{sinx+2cosx}{cosx+2sinx}\)
Cho tanx \(\sqrt{2}\). Tính B = \(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
Cho \(sinx+cosx=\frac{1}{5}\) Tính P = | sinx - cosx |
Đơn giản các biểu thức sau:
a) sin a.\(\sqrt{1+tan^2a}\)
b) \(\frac{1-cos^2x}{1-sịn^2x}+tanx.cotx\)
c) \(\frac{1-4sin^2x.cos^2x}{\left(sinx+cosx\right)^2}\)
d) sin(90o-x)+cos(1800-x)+sin2x(1+tan2x)-tan2x
Biết sinx=\(\frac{1}{3}\), \(90^{\bigcirc}< x< 180^{\bigcirc}\). Tính\(A=\frac{\tan x+3\cot x+1}{\tan x+\cot x}\)
cho \(cosx=-\frac{3}{5}\).Tính sin,tan,cot
Tính
\(sin^4.x=\left(sin^2x\right)^2\)
a) A= \(\left(cos.x+sin.x\right)^2+\left(sin.x-cos.x\right)^2\)
b) B= \(sin^4.x-cos^4.x-2sin^2.x+1\)
c) C= \(2cos^4.x-sin^4.x+sin^2.x.cos^2.x+3sin^2.x\)
d) D= \(\left(cot.x+tan.x\right)^2-\left(cot.x-tan.x\right)^2\)
e) E= \(\sqrt{1+cos.x}.\sqrt{1-cosx}\)
f) F= \(sin.x\sqrt{1+tan^2x}\)
g) G= \(sin\left(180-x\right).cot\left(180-x\right)\)
h) H= \(cot.x\left(\frac{1+sin^2.x}{cos.x}-cos.x\right)\)
Cho tan2α = 2 và π < α < \(\frac{3\pi}{2}\). Biết giá trị của biểu thức M= \(\frac{cos(\alpha+\frac{\pi}{3})+cos(\alpha-\frac{\pi}{3})}{tan(\frac{\pi}{2}-\alpha)+tan(\frac{\pi+\alpha}{2}}=\frac{a}{\sqrt{b}}\) với a, b là các số nguyên. Khi đó, giá trị của biểu thức T = 2a + b là ?
chứng minh biểu thức không phụ thuộc vào x
\(A=2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
\(B=sin^6x+cos^6x-2sin^4x-cos^4x+sin^2x\)
\(C=\left(sin^4x+cos^4x-1\right)\left(tan^2x+cot^2x+2\right)\)
\(D=\frac{1}{cos^6x}-tan^6x-\frac{tan^2x}{cos^2x}\)
Cmr
a, Sin \(\frac{A+B}{2}\)=Cos\(\frac{C}{2}\)
b,Tan(\(\frac{A+B-2C}{2}\))=Cot\(\frac{C}{2}\)
Với A, B, C là 3 góc của tam giác ABC