Gọi K là giao của AE và DF
Xét tg vuông BDF và tg vuông BKF có
\(\widehat{EBF}=\widehat{EKF}\) (cùng phụ với \(\widehat{BDK}\) ) (1)
=> B và K cùng nhìn EF dưới hai góc bằng nhau
=> BEFK là tứ giác nội tiếp \(\Rightarrow\widehat{EFB}=\widehat{EKB}\) (góc nt cùng chắn cung EB) (2)
Ta có \(\widehat{EBF}=\widehat{ABD}\) (gt) (3)
Từ (1) và (3) \(\Rightarrow\widehat{ABD}=\widehat{EKF}\) => B và K cùng nhìn AD dưới 2 góc bằng nhau) => ABKD là tứ giác nội tiếp
\(\Rightarrow\widehat{ADB}=\widehat{EKB}\) (góc nội tiếp cùng chắn cung AB) (4)
Xét tg ABD và tg EBF có
\(\widehat{ABD}=\widehat{EBF}\) (gt)
Từ (2) và (4) \(\Rightarrow\widehat{ADB}=\widehat{EFB}\)
\(\Rightarrow\widehat{BAC}=\widehat{BEF}\)