Ta có : \(OB^2+OE^2=6,25\)
Và : \(OD^2+OC^2=25\)
Mà: \(OD=\frac{1}{2}OB\)
\(OC=2OE\)
\(\Rightarrow\text{OE}=2,5\)
\(\Rightarrow OB=0\)
\(\Rightarrow BC=5\)
Ta có : \(OB^2+OE^2=6,25\)
Và : \(OD^2+OC^2=25\)
Mà: \(OD=\frac{1}{2}OB\)
\(OC=2OE\)
\(\Rightarrow\text{OE}=2,5\)
\(\Rightarrow OB=0\)
\(\Rightarrow BC=5\)
Cho tam giác ABC vuông ở C có đường trung tuyến BN vuông góc với đường trung tuyến CM, cạnh BC = a. Tính độ dài đường trung tuyến BN ?
Cho tam giác ABC, góc A=90 độ, đường trung tuyến AM cắt đường phân giác BD và vuông góc tại I. Tính AB,BC,AC khi biết BD=a
BÀI 1:
Chứng minh rằng nếu hai cạnh bên của một hình thang cắt nhau thì đường thẳng đi qua giao điểm đó và giao điểm 2 đường chéo sẽ đi qua trung điểm các đáy của hình thang.
BÀI 2:
Tam giác ABC có BC= 2AB và góc ABC=120 độ. Chứng minh rằng đường trung tuyến BM vuông góc AB
BÀI 3:
Cho tam giác ABC vuông tại A. về phía ngoài tam giác lấy AB và BC làm cạnh, dựng các hình vuông ABDE và BCFG. Chứng minh GA vuông góc CD
BÀI 4:
Trên 2 cạnh AB và AC của tam giác ABC ta dựng ra phía ngoài của tam giác các hình vuông ABDE và ACFG ; dựng hình bình hành AEHG. Gọi K là giao điểm của AD và BE . Chứng minh CK vuông góc KH
cho tam giác ABC . có BC=10 cm . đường trung tuyến BD và CE có đọ dài lần lượt là 9cm và 12cm . CMR BD_|_CE
Cho tam giác ABC có AC=5, BC=6 và AD, BE là các đường trung tuyến vuông góc tại O. tính AB
Cho tam giác ABC vuông tại B, cạnh BC = 20132014 cm; hai trung tuyến BM và CN vuông góc với nhau. Tính CN ?
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
cho tam giác ABC vuông ở A, đường cao AH chia cạnh huyền BC thành 2 đoạn có độ dài BH=4cm, CH=9cm. D, E là hình chiếu của H trên AB, AC.
a, tính DE
b, các đường vuông góc với DE tại D và E cắt BC tại M và N .CM: M là trung điểm BH, N là trung điểm CH
c, tính diện tính tứ giác DENM
cho tam giác abc vuông tại a, m là trung điểm của ac. vẽ md vuông góc với bc. chứng minh ab^2 =bd^2- cd^2