Đặt BH = x
=> BC = x + 4
Tam giác ABH vuông tại H , theo HTL :
AB^2 = BH.BC
<=> 4^2 = x(x+4)
<=> x^2 + 4x - 16 = 0
<=> x^2 + 4x + 4 - 20 = 0
<=> ( \(\left(x+2+2\sqrt{5}\right)\left(x+2-2\sqrt{5}\right)\) = 0
=> \(x=2\sqrt{5}-2\) ( vì x >0 )
AC^2 = HC.BC = 4.\(\left(2\sqrt{5}-2+4\right)=4.\left(2\sqrt{5}+2\right)=8\sqrt{5}+8\)
AM = 1/2BC = \(\frac{1}{2}\left(2\sqrt{5}-2+4\right)=\frac{1}{2}\left(2\sqrt{5}+2\right)=\sqrt{5}+1\)