ĐK : \(x\ge\sqrt[4]{7}\)
pt <=> \(\sqrt{x^2-\frac{7}{x^2}}=x-\sqrt{x-\frac{7}{x^2}}\)
<=> \(x^2-\frac{7}{x^2}=x^2+x-\frac{7}{x^2}-2x\sqrt{x-\frac{7}{x^2}}\)
<=> \(x-2x\sqrt{x-\frac{7}{x^2}}=0\)
=> \(x=2x\sqrt{x-\frac{7}{x^2}}\)
=> \(1=2\sqrt{x-\frac{7}{x^2}}\Leftrightarrow1=4\left(x-\frac{7}{x^2}\right)\)
=> \(4x-\frac{28}{x^2}-1=0\)
=> \(4x^3-x^2-28=0\)
=> \(4x^3-8x^2+7x^2-14x+14x-28=0\)
=> \(\left(x-2\right)\left(4x^2-7x+14\right)=0\)
=> \(x=2\) hoặc \(4x^2-7x+14=0\)
Tự giải tiếp nha