Chứng minh rằng \(\sqrt{3.4+\frac{1}{5}}+\sqrt{4.5+\frac{1}{6}}+...+\sqrt{99.100+\frac{1}{101}}+\sqrt{100.101+\frac{1}{102}}< 5096\)
a)chứng minh rằng \(\sqrt{3}\) không là một số tự nhiên ( với n thuộc N*)
b)\(\sqrt{3.4+\frac{1}{5}}+\sqrt{4.5+\frac{1}{6}}+\sqrt{5.6+\frac{1}{7}}+...+\sqrt{100.101+\frac{1}{102}}<5096\)
Chứng minh rằng: \(\sqrt{3.4+\dfrac{1}{5}}+\sqrt{4.5+\dfrac{1}{6}}+\sqrt{5.6+\dfrac{1}{7}}+...+\sqrt{100.101+\dfrac{1}{102}}< 5096\)
\(\sqrt{3.4+\frac{1}{5}}+\sqrt{4.5+\frac{1}{6}}+\sqrt{5.6+\frac{1}{7}}+....+\sqrt{102.102+\frac{1}{104}}\)bé hơn 5300 giup voi
1. CHỨNG MINH ĐẲNG THỨC
a. \(\text{[}3+2\sqrt{6}-\sqrt{33}\text{]}\cdot\text{[}\sqrt{22}+\sqrt{6}+4\text{]}=24\)
b. \(\text{[}\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\text{]}\cdot\text{[}15+2\sqrt{6}\text{]}\)
c.\(\text{[}\frac{4}{3}\cdot\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\text{]}\cdot\text{[}\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\text{]}=4\)
d. \(\sqrt{\text{[}1-\sqrt{1989}\text{]}^2}\cdot\sqrt{1990+2\sqrt{1989}}=1988\)
e. \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)với \(a>0;b>0\)và \(a\ne b\)
Rút gọn: \(\frac{\sqrt{1+2\sqrt{5\sqrt{\text{7}}-13}}-\sqrt{\sqrt{\text{7}}-2}}{\sqrt{3}-\sqrt{\text{7}}}-\sqrt{\frac{2}{3-\sqrt{5}}}\)
Tính giá trị biểu thức:
\(\text{a) }\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{2010}+\sqrt{2011}}\)
\(\text{b) }\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{121\sqrt{120}+120\sqrt{121}}\)
\(\text{c) }\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...\sqrt{+1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)
help me !
tính S = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+\sqrt{5}7}+.....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\text{ [}\)!
help me !
tính S = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+\sqrt{5}7}+.....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\text{Doumo arigatou}\)!