Chứng minh rằng \(\sqrt{3.4+\frac{1}{5}}+\sqrt{4.5+\frac{1}{6}}+...+\sqrt{99.100+\frac{1}{101}}+\sqrt{100.101+\frac{1}{102}}< 5096\)
a)chứng minh rằng \(\sqrt{3}\) không là một số tự nhiên ( với n thuộc N*)
b)\(\sqrt{3.4+\frac{1}{5}}+\sqrt{4.5+\frac{1}{6}}+\sqrt{5.6+\frac{1}{7}}+...+\sqrt{100.101+\frac{1}{102}}<5096\)
\(\sqrt{\text{3.4+\frac{1}{5}}}+\sqrt{\text{4.5+\frac{1}{6}}}+\sqrt{\text{5.6+\frac{1}{7}}}+...+\sqrt{100.101+\frac{1}{102}}< 5096\)
chứng minh rằng:\(\dfrac{1}{3\left(\sqrt{1}+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\dfrac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}< \dfrac{3}{7}\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
chứng minh đẳng thức: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)= -2
\(B=\dfrac{3}{\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}+\dfrac{x+5}{x-1}\)
Chứng minh rằng \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Cho \(x=\dfrac{\sqrt{2}-1}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{225}-\sqrt{224}}{224+225}\) . Chứng minh rằng \(x< \dfrac{7}{15}\) .