\(\sqrt{\dfrac{y}{2x}}+\dfrac{y}{x}.\sqrt{\dfrac{x}{2y}}=\sqrt{\dfrac{y}{2x}}+\sqrt{\dfrac{y^2}{x^2}.\dfrac{x}{2y}}=\sqrt{\dfrac{y}{2x}}+\sqrt{\dfrac{y}{2x}}=2\sqrt{\dfrac{y}{2x}}=\dfrac{\sqrt{2xy}}{x}\)
\(\sqrt{\dfrac{y}{2x}}+\dfrac{y}{x}.\sqrt{\dfrac{x}{2y}}=\sqrt{\dfrac{y}{2x}}+\sqrt{\dfrac{y^2}{x^2}.\dfrac{x}{2y}}=\sqrt{\dfrac{y}{2x}}+\sqrt{\dfrac{y}{2x}}=2\sqrt{\dfrac{y}{2x}}=\dfrac{\sqrt{2xy}}{x}\)
rút gọn
a, \(\dfrac{x}{y}\sqrt{\dfrac{x^2}{y^4}}\) với x>0, y khác 0
b, \(2y^2\sqrt{\dfrac{x^4}{4y^2}}\) với y<0
a : \(\dfrac{y}{x}.\sqrt{\dfrac{x^2}{y^4}}\) với y ≥ 0 , y ≠ 0
b : \(\dfrac{5}{2}x^3y^3.\sqrt{\dfrac{16}{x^4y^8}}\)với x,y ≠ 0
c : \(ab^2\sqrt{\dfrac{3}{a^2b^4}}\)với a ≥ 0 , b ≠ 0
1) Trong các đẳng thức sau, đẳng thức nào đúng
a) \(x\sqrt{2}=\sqrt{2x}\)
b) \(x\sqrt{2}=\sqrt{2x^2}\) với x2 > 0
c) \(x\sqrt{\dfrac{2}{x}}=\sqrt{2x^2}\)
d) \(x\sqrt{\dfrac{2}{x}}=-\sqrt{2x}\)
2) Với x > y > 0 thì biểu thức \(\dfrac{1}{y-x}\sqrt{2x^2.\left(x-y\right)^2}\) được rút gọn là
Cho x, y, z > 0 thoả mãn x+y+z=2. Tìm GTNN của các biểu thức:
a) \(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)
b) \(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)
c) \(C=\sqrt{2x^2+\dfrac{3}{y^2}+\dfrac{4}{z}}+\sqrt{2y^2+\dfrac{3}{z^2}+\dfrac{4}{x^2}}+\sqrt{2z^2+\dfrac{3}{x^2}+\dfrac{4}{y^2}}\)
a) Cho 0<x<y thỏa mãn \(2x^2+2y^2=5xy\). Tính E=\(\dfrac{x^2+y^2}{x^2-y^2}\)
b) Cho x=\(\dfrac{1}{\sqrt[3]{3-2\sqrt{2}}}\)+ \(\sqrt[3]{3-2\sqrt{2}}\). Tính giá trị biểu thức
P=\(\left(2x^3-6x+2008\right)^{2021}\)
a : \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a ≥ 0
b : \(\sqrt{3a}.\sqrt{\dfrac{52}{a}}\)với a ≥ 0
c : \(2y^2.\sqrt{\dfrac{x^4}{4y^2}}\)với y ≤ 0
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)
cho các số thực dương x,y,z thoả mãn \(\sqrt{x}\) + \(\sqrt{y}\) + \(\sqrt{z}\) = 1
chứng minh rằng : \(\sqrt{\dfrac{xy}{x+y+2z}}\) + \(\sqrt{\dfrac{yz}{y+z+2x}}\) + \(\sqrt{\dfrac{zx}{z+x+2y}}\) ≤ \(\dfrac{1}{2}\)
Tìm GTNN của A=\(\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{z}}+\dfrac{z}{\sqrt{x}}\) với x,y,z>0 và \(x+y+z\ge12\)