\(\sqrt{\dfrac{1+x}{x^2-1}}\) có nghĩa khi
\(\sqrt{3x-5}\) + \(\sqrt{\dfrac{2}{x-4}}\) có nghĩa khi
Trắc nghiệm
Câu 1: Biết \(\cos a=\dfrac{2}{3}\) thì \(\sin a\) có giá trị là : A. \(\dfrac{1}{3}\) B.\(\dfrac{\sqrt{5}}{3}\) C \(\dfrac{5}{9}\) D.\(\dfrac{5}{3}\)
Câu 2 : \(\sqrt{\dfrac{2}{x}}\) có nghĩa khi và chỉ khi là : A. x ≥ 0 B. x > 0 C. x ≠ 0 D. x ≠ 2
Câu 3 : Δ ABC vuông tại A có góc B= 300 , BC= 24cm . Độ dài AC bằng : A. 9 B. \(6\sqrt{3}\) C. \(\sqrt{18}\) D.12
Câu 4 : Kết quả phép tính \(\sqrt{9+4\sqrt{5}}\) là : A. 3-2\(\sqrt{5}\) B.2-\(\sqrt{5}\) C. \(\sqrt{5}-2\) D.\(\sqrt{5}+2\)
giải giúp mk vớiiiiiii ạ
Câu 3: Cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\) + \(\dfrac{3}{\sqrt{x}+1}\) + \(\dfrac{6\sqrt{x}-4}{1-x}\)
a. Tìm điều kiện của x để A có nghĩa rồi rút gọn A. Tính giá trị của A khi x = 6-2\(\sqrt{5}\)
b. Tìm giá trị của x để A < \(\dfrac{1}{2}\)
c. Tìm giá trị nhỏ nhất của biểu thức A
Tìm điều kiện có nghĩa:
1) \(\sqrt{\dfrac{-4}{x^2-1}}\)
2) \(\sqrt{\dfrac{x+1}{x-2}}\)
3) \(\sqrt{\dfrac{x-2}{x+3}}\)
4) \(\sqrt{\dfrac{a-3}{2-a}}\)
5) \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
1. với giá trị nào của x thì biểu thuéc sau có nghĩa
\(\sqrt{x^2-3}\)
\(\dfrac{x}{x-2}+\sqrt{x-2}\)
\(\sqrt{\dfrac{1}{3-2xx}}\)
Tìm điều kiện có nghĩa:
1) \(-\dfrac{1}{\sqrt{a+2}}\)
2) \(\sqrt{\dfrac{3}{\left(x-2\right)^2}}\)
3) \(\sqrt{\dfrac{-3}{a^2-4a+4}}\)
4) \(\sqrt{\dfrac{2}{x^2+2x+2}}\)
5) \(\sqrt{\dfrac{-3}{x^2-4x+5}}\)
6) \(\sqrt{\dfrac{-4}{x^2-1}}\)
7) \(\sqrt{\dfrac{x+1}{x-2}}\)
8) \(\sqrt{\dfrac{x-2}{x+3}}\)
Tìm điều kiện có nghĩa:
1) \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) \(\sqrt{\dfrac{2}{x^2+2x+2}}\)
3) \(\sqrt{\dfrac{-3}{x^2-4x+5}}\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{x^2+2x-3}\)
2) \(\sqrt{2x^2+5x+3}\)
3) \(\sqrt{\dfrac{4}{x-1}}\)
4) \(\sqrt{\dfrac{-1}{x-3}}\)
5) \(\sqrt{\dfrac{-3}{x+2}}\)
6) \(\sqrt{\dfrac{1}{2a-1}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
Tìm z để cho biểu thức có nghĩa
\(\sqrt{\dfrac{5}{^{x^2}+6}}\)
Thực hiện phép tính
\(\dfrac{3}{\sqrt{2}}+\sqrt{\dfrac{1}{2}}-2\sqrt{18+\sqrt{\left(1-\sqrt{2}\right)^2}}\)
\(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
\(\sqrt[3]{\dfrac{3}{4}}\sqrt[3]{\dfrac{9}{16}}\)
\(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}\)
\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)