ĐKXĐ:\(x\ge\frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a>0;\sqrt{9x^2-1}=b\ge0\Rightarrow a^2-b^2=6x-9x^2\)
PT \(\Leftrightarrow a+b=a^2-b^2\Leftrightarrow\left(a-b-1\right)\left(a+b\right)=0\)
Dễ thấy: \(a+b>0\) (do cách đặt)
Nên \(a=b+1\)
...
ĐKXĐ:\(x\ge\frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a>0;\sqrt{9x^2-1}=b\ge0\Rightarrow a^2-b^2=6x-9x^2\)
PT \(\Leftrightarrow a+b=a^2-b^2\Leftrightarrow\left(a-b-1\right)\left(a+b\right)=0\)
Dễ thấy: \(a+b>0\) (do cách đặt)
Nên \(a=b+1\)
...
Giải các phương trình dưới đây
1, \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
2,\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
3, \(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\) (x=3 ; y=3)
GTNN của P = \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}\)
Gỉai các phương trình:
a) \(\sqrt{1-6X+9X^2}\) = 9
b) \(\sqrt{2X-3}\) - \(\sqrt{x+1}\) = 0
c) \(\sqrt{9x^2+12x+4}\) - 2= 3x
\(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\sqrt(9x^(2)-6x+)1=\sqrt((x-2)^(2))
Giải các phương trình :
a) \(3x^2-6x-4=4\left(x-1\right)\sqrt{3x+1}\)
b) \(\sqrt{6x-1}+\sqrt{9x^2-1}=6x-9x^2\)
c) \(3\left(\sqrt{2x-1}+\sqrt{x+3}\right)-2\sqrt{2x^2+5x-3}=3x+4\)
\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)Tìm X
\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x^2-9x+8}Giảiphươngtrìnhtrênhộcái\)