\(\sqrt{3x-19}-5=x\)
\(\sqrt{3x+19}=x+5\)
\(\left(\sqrt{3x+19}\right)^2=\left(x+5\right)^2\)
\(3x+19=x^2+10x+25\)
\(x^2+10x-3x=19-25\)
\(x^2+7x=-6\)
\(x^2+7x+6=0\)
\(\left(x+1\right)\left(x+6\right)=0\)
⇔ \(\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
\(\sqrt{3x+19}-5=x\) ĐKXĐ: 3x + 19 \(\ge\) 0
<=> \(\sqrt{3x+19}=5\)
<=> 3x + 19 = 25
<=> 3x = 6
<=> x = 2