\(\sqrt{-7x}\)
\(ĐKXĐ:-7x\ge0\Leftrightarrow x\le0\)
\(\sqrt{-7x}\)
\(ĐKXĐ:-7x\ge0\Leftrightarrow x\le0\)
giải pt sau:
\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{7x+7}\sqrt{7x-6}=181-14x\)
Cho \(\sqrt{x^2-7x+19}-\sqrt{x^2-7x+15}=2\)
Tính \(A=\sqrt{x^2-7x+19}+\sqrt{x^2-7x+15}\)
Cho \(\sqrt{x^2-7x+24}-\sqrt{x^2-7x+15}=3\)\(\)
Tính \(N=\sqrt{x^2-7x+24}+\sqrt{x^2-7x+15}\)
1, \(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
2, \(\sqrt{x-3}-2.\sqrt{x^2-3x}=0\)
3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
4, \(x-5\sqrt{x}+4=0\)
Giải phương trình:
\(\left(x+1\right)\left(x+4\right)=5\sqrt{x^2+5x+28}\)
\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-4x\)
giải phương trình sau
\(\sqrt{7x^2-22x+28}+\sqrt{7x^2+8x+13}+\sqrt{31x^2+14x+4}=3\sqrt{3}\left(x+2\right)\)
Giải phương trình vô tỉ :
a) \(\sqrt{7x^2+25x+19}-\sqrt{x^2-2x-25}=7\sqrt{x+2}\)
b) \(\sqrt{4x^2+24x+35}-\sqrt{x^2+3x+2}=\sqrt{x^2+7x+12}\)
giai pt
\(\sqrt{\frac{4x+9}{28}}=7x^2+7x\)\(\sqrt{x-7}+\sqrt{5-x}=x^2-16x+66\)\(\sqrt{3x+19}+\sqrt{3x-2}=\sqrt{7x+11}+\sqrt{2x}\)
\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)