`A=1/3+1/[3^2]+1/[3^3]+...+1/[3^99]`
`3A=1+1/3+1/[3^2]+...+1/[3^98]`
`=>3A-A=1+1/3+1/[3^2]+...+1/[3^98]-1/3-1/[3^2]-1/[3^3]-...-1/[3^99]`
`=>2A=1-1/[3^99]`
`=>A=1/2-1/[2.3^99]`
Vì `1/2 > 1/2-1/[2.3^99]`
`=>B > A`
`A=1/3+1/[3^2]+1/[3^3]+...+1/[3^99]`
`3A=1+1/3+1/[3^2]+...+1/[3^98]`
`=>3A-A=1+1/3+1/[3^2]+...+1/[3^98]-1/3-1/[3^2]-1/[3^3]-...-1/[3^99]`
`=>2A=1-1/[3^99]`
`=>A=1/2-1/[2.3^99]`
Vì `1/2 > 1/2-1/[2.3^99]`
`=>B > A`
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.....+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) Chứng minh A < \(\dfrac{3}{16}\)
2/ Cho B=(\(\dfrac{1}{2^2}\)-1)(\(\dfrac{1}{3^2}\)-1)....(\(\dfrac{1}{100^2}\)-1) So sánh B và \(\dfrac{-1}{2}\)
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+...+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\)
c/m A<\(\dfrac{3}{16}\)
\(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}\)
\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
chứng minh C <\(\dfrac{1}{2}\)
Cho biểu thức : \(C=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}+\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) CMR: \(C< \dfrac{3}{16}\)
Tính:
I=(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)).(\(\dfrac{1}{2}\)-\(\dfrac{1}{5}\)).(\(\dfrac{1}{2}\)-\(\dfrac{1}{7}\)). ... .(\(\dfrac{1}{2}\)-\(\dfrac{1}{99}\))
CMR: \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Bài 1:Cho C=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\). Chứng minh C < \(\dfrac{1}{2}\)
Tính
\(C=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+..+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
a) rút gọn: \(\dfrac{4^5x9^4-2x6^9}{2^{10}x3^8+6^8x20}\)
b) Cho A=\(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\).So sánh A với 2