Do 2n+1 là số chính phương lẻ nên 2n+1 chia cho 8 dư 1.
=> n chia hết cho 4. => 3n+1 cũng là một số chính phương lẻ(Do 3n+1 là số chính phương).
=> 3n+1 chia cho 8 dư 1. => 3n chia hết cho 8.
=> n chia hết cho 8( Do (3,8)=1). (1)
-Ta có: 2n+1 và 3n+1 là hai đô chính phương. +Nếu n chia cho 5 dư 4=> 3n+1 chia cho 5 dư 3. => Loại do
số chính phương chia cho 5 chỉ dư 0;1;4. +Nếu n chia cho 5 dư 3=> 2n+1 chia cho 5 dư 2. => Loại.
+Nếu n chia cho 5 dư 2=> 3n+1 chia cho 5 dư 2. => Loại.
+Nếu n chia cho 5 dư 1=> 2n+1 chia cho 5 dư 3. => Loại.
-Từ 4 điều trên và n có tồn tại => n chia hết cho 5. (2)
-Từ (1);(2) => n chia hết cho 8.5= 40.( Do (8,5)=1).
=>n=40 hoặc n=80
Với n=40 =>2n+1 là số chính phương
Với n=80 =>2n+1 không phải là số chính phương
Vậy n=40