So sánh
a.2\(\sqrt{29}\) và 3\(\sqrt{13}\)
b.\(\dfrac{5}{4}\)\(\sqrt{2}\) và \(\dfrac{3}{2}\)\(\sqrt{\dfrac{3}{2}}\)
c.5\(\sqrt{2}\) và 4\(\sqrt{3}\)
d.\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\) và 6\(\sqrt{\dfrac{1}{37}}\)
1/ So sánh
a) 3 - 2\(\sqrt{3}\) và 2\(\sqrt{6}\) - 5
b) \(\sqrt{4\sqrt{5}}\) và \(\sqrt{5\sqrt{3}}\)
c) 3 - 2\(\sqrt{5}\) và 1 - \(\sqrt{5}\)
d) \(\sqrt{2006}\) - \(\sqrt{2005}\) và \(\sqrt{2005}\) - \(\sqrt{2004}\)
e) \(\sqrt{2003}\) + \(\sqrt{2005}\) và \(2\sqrt{2004}\)
2/ Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất
a) -x² + 4x - 2
b) \(\sqrt{2x^2\:+\:3}\)
c) 2x - \(\sqrt{1x}\)
d) -3 + \(\sqrt{2x^2\:+\:49}\)
e) \(\sqrt{9x^2\:-\:4x\:+\:65}\)
f) -5 + \(\sqrt{4\:-\:9x^2\:+\:6x}\)
so sánh
a) 2 và \(\sqrt{3}\)
b) 6 và \(\sqrt{41}\)
c) 7 và \(\sqrt{47}\)
So sánh
a, 6+\(2\sqrt{2}\) và 9
b, \(\sqrt{11}-\sqrt{3}\) và 2
So sánh
M=\(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\) với N=\(\dfrac{4}{\sqrt[3]{9}}\)
chỉ giúp em cách làm với ạ
Câu 1: Cho hệ trục tọa độ Oxy. Đường thẳng song song với đường thẳng \(y=\sqrt{2x}\) và cắt trục tung tại điểm 1 là ?
Câu 2 : So sánh Q= \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4+\sqrt{4}}}}}\)và R=3
Câu 3: Số giá trị x thỏa mãn : \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
Câu 4: Tìm x, biết : \(\sqrt[3]{x-2}+\sqrt{x+8}=2\)
Câu 5: So sánh : a=\(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}\)và b=\(2\sqrt[3]{3}\)
Câu 6: Tìm x, biết \(x^2-5x-2\sqrt{3x}+12=0\)
Cho M=\(\frac{\sqrt{2}-\sqrt{1}}{1+1}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+\frac{\sqrt{4}-\sqrt{3}}{3+4}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}\)
Hãy so sánh M với 1/2
So sánh Q=\(\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}+\frac{1-\sqrt{3}+\sqrt{4}}{1+\sqrt{3}+\sqrt{4}}+...+\frac{1-\sqrt{2016}+\sqrt{2017}}{1+\sqrt{2016}+\sqrt{2017}}\)với R=\(\sqrt{2017}-1\)
Rút gọn : ( giúp với )
a) \(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b) \(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d) \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)