Ta có:
`(1/2)^40=1^40/2^40`
`=1/2^40`
`(1/2)^50=1^50/2^50`
`=1/2^50`
Vì: `40<50`
Do đó: `2^40<2^50`
Suy ra: `1/2^40>1/2^50`
Hay: `(1/2)^40>(1/2)^50`
Vậy: `(1/2)^40>(1/2)^50`
Ta có:
(1/2)^40 = 1^40/2^40 = 1/2^40
(1/2)^50 = 1^50/2^50 = 1/2^50
Vì 40 < 50 nên 2^40 < 2^50
=> 1/2^40 > 1/2^50
Vậy (1/2)^40 < (1/2)^50