\(\frac{2\sqrt{3+3}}{2\sqrt{3-3}}=3,0621......\)
\(\sqrt{3}=1,7320.....\)
=> \(\frac{2\sqrt{3+3}}{2\sqrt{3-3}}\) > 3 > \(\sqrt{3}\)
\(\frac{2\sqrt{3+3}}{2\sqrt{3-3}}=3,0621......\)
\(\sqrt{3}=1,7320.....\)
=> \(\frac{2\sqrt{3+3}}{2\sqrt{3-3}}\) > 3 > \(\sqrt{3}\)
Bài 1 : Cho \(S=\frac{1}{3\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}\)
So sánh S với \(\frac{3}{7}\)
Cho \(P=\left(2-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a. Rút gọn p
b Tính giá trị của P khi = \(\frac{3-2\sqrt{2}}{4}\)
c. So sánh P với \(\frac{3}{2}\)
Cho biểu thức: P= \(\left(2-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{2x-\sqrt{x}-E3}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a, Rút gọn P
b, Tính giá trị của P khi x= \(\frac{3-2\sqrt{2}}{4}\)
c, So sánh P với \(\frac{3}{2}\)
P/s: Phần E3 kia là 3 nhé, mình không sửa được
Tính các tổng
a. \(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+....+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
b. \(B=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{121\sqrt{120}+120\sqrt{121}}\)
Mọi người giúp tớ với nhé!! Cảm ơn trước nha!!
Cho \(A=\sqrt{11+\sqrt{96}}\) và \(B=\frac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}\)
So sánh A và B
Rút gọn :
\(B=\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}\)
\(C=\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}\)
\(D=\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)
\(E=\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
\(F=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
a. \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
b. \(3\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}\)
c. \(\left(1+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\frac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
d. \(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)
e. \(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
f. \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
CỨU TUI VỚI <3 <3
Mình rút gọn như thế này đúng không nhỉ?
\(P=\left(2-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(P=\left[\frac{2\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right]:\left[\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right]\)
\(P=\left(\frac{4\sqrt{x}-6}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\left(\frac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}:\frac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}.\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}{2x+3\sqrt{x}+1}\)
\(P=\left(3\sqrt{x}-5\right).\frac{\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x+3\sqrt{x}-5\sqrt{x}-5}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x-5\sqrt{x}-5}{2x+1}\)
So sánh ( không dùng bảng số hay máy tính bỏ túi)
a) 6 + 2$\sqrt{2}$ và 9
b) $\sqrt{2}+\sqrt{3}$ và 3
c) 9 + 4$\sqrt{5}$ và 16
d) $\sqrt{11}-\sqrt{3}$ và 2