Chắc là \(+28^2\)
Ta có : \(A=\left(30-29\right)\left(30+29\right)+.....+\left(2-1\right)\left(2+1\right)\)
\(=30+29+28+...+2+1\)
\(=465< 600\)
Vậy ....
Sửa đề: \(A=30^2-29^2+28^2-27^2+...+2^2-1^2\)
\(=30+29+28+27+...+2+1\)
\(=465< 600\)
Vậy: A<600
Chắc là \(+28^2\)
Ta có : \(A=\left(30-29\right)\left(30+29\right)+.....+\left(2-1\right)\left(2+1\right)\)
\(=30+29+28+...+2+1\)
\(=465< 600\)
Vậy ....
Sửa đề: \(A=30^2-29^2+28^2-27^2+...+2^2-1^2\)
\(=30+29+28+27+...+2+1\)
\(=465< 600\)
Vậy: A<600
1.so sánh các lũy thừa
3^1800 và 37^600
2^2000 và 35^500
3^1791 và 37^600
3^453 và 5^287
Câu 21: So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
A. M > N B. M < N C. M = N D. M = N – 1
Câu 22: Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x
A. 5 B. -5 C. 8 D.-8
Câu 23: Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi
A. x = 9 B. x = 10 C. x = 11 D.x = 12
Câu 24: Kết quả của phép chia 15x3y4 : 5x2y2 là
A. 3xy2 B. -3x2y C. 5xy D. 15xy2
Câu 25: Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là
A. 3y2 + 2xy – x2 B. 3y2 + 2xy + x2 C. 3y2 – 2xy – x2 D. 3y2 + 2xy
So sánh a và b nếu : \(-15a+12\ge-15b+12\)
So sánh :
a) A = 2005.2001 và B = 20062
b) B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) và B = 232
c) C = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1) và B = 332 - 1
Cho 12+a=< 13+b
Hãy so sánh a và b
A=(a^4+4+2a^2)(a^4-4)(a^4+4-2a^2) và B=a^12-2012^0
So sánh A và B
So sánh:
A=(3+1)(32+1)(34+1)(38+1)(316+1) và B=322-1
So sánh M = 2 32 và N = ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 )
A. M > N
B. M < N
C. M = N
D. M = N – 1
So sánh A và B
1 , A=2003.2005 và B=2004^2
2, A=123456787.123456789 và B=123456788^2
3, A=12(5^2+1)(5^4+1)...(5^128+1) và B =5^256-1