\(\dfrac{1}{2022}\cdot A=\dfrac{2022^{100}+1}{2022^{100}+100}=1-\dfrac{99}{2022^{100}+100}\)
\(\dfrac{1}{2022}B=\dfrac{2022^{101}+1}{2022^{101}+100}=1-\dfrac{9}{2022^{101}+100}\)
2022^100+100<2022^101+100
=>-99/2022^100+100<-99/2022^101+100
=>A<B
=> A/2022 = 2022^100+1/2022^100+2022 = 1- 2021/2022^100+2022
=> B/2022 = 2022^101+1/2022^101+2022 = 1- 2021/2022^101+2022
Nhận thấy 2022^101 + 2022 > 2022^100 + 2022
=> 2021/2022^101 + 2022 < 2021/2022^100 + 2022
=> B/2022 > A/2022 => B>A
Vậy A<B