\(14A=\dfrac{14^{15}+14}{14^{15}+1}=\dfrac{14^{15}+1+13}{14^{15}+1}=1+\dfrac{13}{14^{15}+1}\)
\(14B=\dfrac{14^{16}+14}{14^{16}+1}=1+\dfrac{13}{14^{16}+1}\)
Ta có: \(14^{15}+1< 14^{16}+1\)
=>\(\dfrac{13}{14^{15}+1}>\dfrac{13}{14^{16}+1}\)
=>\(\dfrac{13}{14^{15}+1}+1>\dfrac{13}{14^{16}+1}+1\)
=>14A>14B
=>A>B