A = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\) + \(\dfrac{1}{3^{100}}\)
3A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\)
3A - A = 1 - \(\dfrac{1}{3^{100}}\)
2A = 1 - \(\dfrac{1}{3^{100}}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{100}}\) < \(\dfrac{1}{2}\)