Đáp án B
Phương pháp:
Sử dụng các công thức giải phương trình lượng giác cơ bản:
Đáp án B
Phương pháp:
Sử dụng các công thức giải phương trình lượng giác cơ bản:
Số nghiệm chung của hai phương trình 4 cos 2 x - 3 = 0 và 2sinx + l = 0 trên khoảng (-π/2;3π/2) là?
A. 4.
B. 1.
C. 2.
D. 3.
Số nghiệm chung của hai phương trình 4 cos 2 x − 3 = 0 và 2.sin x + 1 = 0 trên khoảng − π 2 ; 3 π 2 là:
A. 4
B. 1
C. 2
D. 3
Số nghiệm thuộc ( 0 ; π ) của phương trình sin x + 1 + c o s 2 x = 2 ( c o s 3 3 x + 1 ) là
A. 1
B. 2
C. 3
D. 4
Tìm số nghiệm thuộc khoảng ( 0 ; π ) của phương trình cos ( x + π 4 ) = 0.
A. 0
B. 1
C. 2
D. 3
Số nghiệm thuộc khoảng ( 0 ; π ) của phương trình. tan x + sin x + tan x - sin x = 3 tan x là
A. 0
B. 1
C. 2
D. 3
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Tìm m để phương trình cos2x + 2(m+1)sĩn -2m-1=0 có đúng 3 nghiệm x ∈ 0 ; π
Cho các phát biểu sau:
(1) Phương trình x 4 - 3 x 3 + 1 = 0 có nghiệm trên khoảng (-1;3)?
(2) PT sau: cos2x = 2sinx-2 có ít nhất hai nghiệm trong khoảng ( - π 6 ; π )
(3) x 5 - 5 x - 1 = 0 có ít nhất ba nghiệm
(4): Phương trình x 3 - 3 x + 1 = 0 có ít nhất 2 nghiệm trên (-2;2)
Hỏi có bao nhiêu phát biểu đúng
A. 4
B. 2
C. 3
D. 1
Cho các phát biểu sau:
(1): Phương trình y = x 4 - 3 x 3 + 1 = 0 có nghiệm trên khoảng - 1 ; 3 ?
(2): Phương trình sau: cos 2 x = 2 sin x - 2 có ít nhất hai nghiệm trong khoảng - π 6 ; π
(3): y = x 5 - 5 x - 1 = 0 có ít nhất ba nghiệm
(4): Phương trình x 3 - 3 x + 1 = 0 có ít nhất 2 nghiệm
trên - 2 ; 2 . Hỏi có bao nhiêu phát biểu đúng
A. 4
B. 2
C. 3
D. 1
Tìm góc α ∈ {π/6;π/4;π/3;π/2} để phương trình cos2x+ 3 sin2x-2cosx= 0 tương đương với phương trình c o s ( 2 x - α ) = cos x
A. α = π / 6
B. α = π / 4
C. α = π / 2
D. α = π / 3