Số giá trị nguyên m để phương trình 4 m - 4 . sin x . cos x + m - 2 . cos 2 x = 3 m - 9 . Có nghiệm là:
A. 7
B. 6
C. 5
D. 4
Cho phương trình: cos 2 x + sin x - 1 = 0 * . Bằng cách đặt t = sin x - 1 ≤ x ≤ 1 thì phương trình (*) trở thành phương trình nào sau đây
A. - 2 t 2 + t = 0
B. t 2 + t + 2 = 0
C. - 2 t 2 + t - 2 = 0
D. - t 2 + t = 0
Cho phương trình cos x + sin x = 1 + sin 2 x + cos 2 x . Nghiệm của phương trình có dạng x 1 = a π + k π . x 2 = ± b π + k 2 π b > 0 Tính tổng a + b
A. 1 12
B. 3
C. 7 π 12
D. π 4
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Giải phương trình cos x + cos 3 x = sin x - sin 3 x .
A . x = - π 4 + k π 2 k ∈ ℤ
B . x = π 4 + k π 2 k ∈ ℤ
C . x = π 4 + k π k ∈ ℤ
D . x = π 4 + k 2 π k ∈ ℤ
Cho phương trình sin 2 x + 1 = 6 sin x + c o s 2 x . Chọn phát
biểu sai trong các phát biểu dưới đây:
A.Phương trình chỉ có 1 họ nghiệm dạng x = a + k π , k ∈ ℤ
B. Có 2 điểm biểu diễn nghiệm của phương trình trên đường tròn lượng giác
C. Tổng tất cả các nghiệm của phương trình trong khoảng ( - π ; π ] là 0
D. Tổng tất cả các nghiệm của phương trình trong khoảng là 0
Tìm họ nguyên hàm của hàm số lượng giác sau :
\(f\left(x\right)=\int\frac{4\sin x+3\cos x}{\sin x+2\cos x}dx\)
Tổng tất cả các giá trị nguyên của m để phương trình 4 sin x + ( m - 4 ) cos x - 2 m + 5 = 0 có nghiệm là:
A. 5
B. 6
C. 10
D. 3
Cho phương trình sau: sin 3 x - sin x + cos 2 x = 1 . Phương trình có họ nghiệm x = π a + k 2 π 3 , k ∈ ℤ hỏi giá trị của a
A. 1
B. 6
C. 3
D. 4
Nghiệm của phương trình cos(x+π/4)= 2 2 là
A. x = k 2 π h o ặ c x = - π / 2 + k π ( k ∈ Z )
B. x = k π h o ặ c x = - π / 2 + k π ( k ∈ Z )
C. x = k π h o ặ c x = - π / 2 + k 2 π ( k ∈ Z )
D. x = k 2 π h o ặ c x = - π / 2 + k 2 π ( k ∈ Z )