\(S=2^1+2^2+2^3+...+2^{60}\)
\(2\cdot S=2^2+2^3+2^4+...+2^{61}\)
\(S=2^{61}-2\)
\(\Rightarrow S⋮2\)
Nếu S chia hết cho 2 thì \(S⋮2^2\) (nếu số chính phương chia hết cho số đó thì số chính phương cũng chia hết cho bình phương của số đó)
Ta có:
\(2^{61}=2^2\cdot2^{59}=4\cdot2^{59}⋮4\)
Mà \(2⋮4̸\) nên \(S=2^{61}-2\)\(⋮̸\)\(4\)
Vậy S không phải là số chính phương.