a) rút gọn biểu thức \(f\left(x\right)=\frac{x+x^2+x^3+...+x^{2015}}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2015}}}\)
b) tìm 2 chữ số tận cùng của f(2015)
Cho \(f\left(x\right)=\left(x^2+x+1\right)^2+1\).Gọi n là số nguyên dương nhỏ nhất mà \(\frac{f\left(2\right).f\left(4\right)......f\left(2n\right)}{f\left(1\right).f\left(3\right).....f\left(2n-1\right)}>2^{2013}\)
Tìm chữ số tận cùng của n
Cho đa thức \(f\left(x\right)=6x^3-7x^2-16x+m\cdot f\left(x\right)\) chia hết cho \(2x-5\). Tìm \(m\) và số dư phép chia \(f\left(x\right)\) cho \(3x-2\).
Cho đa thức \(f\left(x\right)=ax^2+bx+2020\) có các hệ số a,b là các số hữu tỉ và \(f\left(\sqrt{3}-1\right)=2021\). Tìm a,b và tính \(f\left(1+\sqrt{3}\right)\)
a)Tính giá trị của biểu thức : S=\(\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(100^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)..\left(99^4+\frac{1}{4}\right)}\)
b) Cho x,y là các số thực dương.Tìm GTNN của biểu thức : P=\(\frac{x+y}{\sqrt{x\left(4x+5y\right)}+\sqrt{y\left(4y+5x\right)}}\)
Cho tập hợp \(S=\left\{x|x^4-13x^2+36\le0\right\}\), tìm GTLN của hàm số \(f\left(x\right)=x^3-3x\) trên tập S.
cho x,y,z là các số thực dương
Tìm giá trị nhỏ nhất của \(P=\frac{x+3y}{4x\left(13y-x\right)}+\frac{2y+z}{36yz}+\frac{\sqrt[4]{3x^3+z^3-3x^2+3y+5}-\left(x-y-z\right)}{18}\)
Cho 3 số thực x;y;z thỏa mãn : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
Giá trị của biểu thức S =\(\left(x-4\right)^{2013}+ \left(y-4\right)^{2013}+\left(z-4\right)^{2013}\)
Tính S ???
cho x+2y và 2x+y là 2 số thực dương khác 2.tìm Min của biểu thức:
\(P=\frac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}+\frac{\left(2y^2+x\right)\left(4y+x^2\right)}{\left(2y+x-2\right)^2}-3\left(x+y\right)\)