\(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2=3-\sqrt{5}+3+\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\\ =6+2\sqrt{3^2-\sqrt{5}^2}\\ =6+2\sqrt{9-5}=6+2\sqrt{4}\\ =6+2.2=10\)
\(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2=3-\sqrt{5}+3+\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\\ =6+2\sqrt{3^2-\sqrt{5}^2}\\ =6+2\sqrt{9-5}=6+2\sqrt{4}\\ =6+2.2=10\)
rút gọn
g, \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right).\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\) h,\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right).\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\dfrac{1}{5}}\right)\)
rút gọn
\(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
\(\dfrac{\sqrt{15-10\sqrt{2}}-\sqrt{10}}{\sqrt{5}}\)
Rút gọn: (Giải chi tiết từng bước)
5) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\)
6) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
rút gọn biểu thức chưa căn thức bậc hai:
1,\(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)
2, \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
3,\(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
4,\(\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
5,\(\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
RÚT GỌN BIỂU THỨC
A= \(\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\)\(\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)
B= \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\)\(\left(\sqrt{6}+11\right)\)
Rút gọn B=\(5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2\)
Rút gọn biểu thức:
B=\(21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{5}\)
Rút gọn
1) \(E=\left(\sqrt{11}-3\right)\left(\sqrt{13-\sqrt{6}+2\sqrt{30-\sqrt{54}}}+\sqrt{11}-\sqrt{10-\sqrt{6}}\right)\)
2) \(F=\frac{\left(\sqrt{3-\sqrt{5}}-1\right)\left(\sqrt{3-\sqrt{5}}\left(3-\sqrt{5}\right)+1\right)}{4-\sqrt{5}-\sqrt{3-\sqrt{5}}}+\sqrt{5}\)
Rút gọn biểu thức
A= \(\frac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn
C = 21(\(\sqrt{2+\sqrt{3}}\) -\(\sqrt{6-2\sqrt{5}}\))2-6(\(\sqrt{2-\sqrt{3}}\) +\(\sqrt{\left(3+\sqrt{5}\right)^2}\))