\(A=\left(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right).\dfrac{1}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)
\(=\left[\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right].\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{1+\sqrt{x}-x\sqrt{x}-x}{1-\sqrt{x}}.\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{\left(1+\sqrt{x}\right)\left(1-x\right)}{1-\sqrt{x}}.\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{1-x}{1-\sqrt{x}}\)