`A=(x^2-x-6)/x+2`
`=(x^2-x-6+2x)/x`
`=(x^2+x-6)/x`
`x=-2`
`=>A=(4+2-6)/(-2)`
`=0/(-2)`
`=0`
Ta có: \(A=\dfrac{x^2-x-6}{x+2}\)
\(=\dfrac{x^2-3x+2x-6}{x+2}\)
\(=\dfrac{x\left(x-3\right)+2\left(x-3\right)}{x+2}\)
\(=\dfrac{\left(x-3\right)\left(x+2\right)}{x+2}\)
=x-3
Vì x=-2 không thỏa mãn ĐKXĐ nên Khi x=-2 thì \(A\in\varnothing\)