\(x^3-5x=0\Rightarrow x\left(x^2-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)
Ta có: \(x^3-5x=0\)
\(\Leftrightarrow x\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)