RUT GON PHAN THUC
1) \(\frac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)
2) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-c\right)}{ab^2-ac^2-b^3+bc^2}\)
3) \(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)
rut gon \(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
rut gon
\(C=\left(a+b+c\right)^3+\left(a-b-c\right)^3+\left(b-c-a\right)^3+\left(c-a-b\right)^3\)
Rut gon
\(M=\frac{ab}{c-a}+\frac{ac}{\left(b-a\right)\left(b-c\right)}+\frac{bc}{\left(a-b\right)\left(a-c\right)}\)
rut gon cac bieu thuc
a) \(4x^2\left(5x^2-2x+3\right)\)
b)\(\left(x+2\right)\left(x-2\right)-\left(x+2\right)^2\)
c)\(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
1)\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
2)\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
3)\(\frac{1}{x^2+3x+2}+\frac{2x}{x^3+4x^2+4x}+\frac{1}{x^2+5x+6}\)
Mạnh hơn BĐT Nesbitt:
Chứng minh:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}+\frac{\left[\Sigma_{cyc}\left(a+b\right)\left(b+c\right)\right]\left(a-b\right)^2}{2\left(a+c\right)\left(b+c\right)\left[\left(b+a\right)\left(c+a\right)+\left(c+b\right)\left(a+b\right)\right]}\)
Với a, b, c > 0
Rút gọn:\(\frac{\left(b-c\right)^{^3}+\left(c-a\right)^{^3}+\left(a-b\right)^{^3}}{a^2.\left(b-c\right)+b^2.\left(a-c\right)+c^{^2}\left(a-b\right)}\)
PTĐT thành nhân tử
a) \(A=a\left(b+c-a\right)^2+b\left(c+a-b\right)^2+c\left(a+b-c\right)^2+\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
b) \(B=\left(a+b-c\right)^3+\left(a-b+c\right)^3+\left(-a+b+c\right)^3-\left(a+b+c\right)^3\)
c) \(C=bc\left(a+b\right)\left(b-c\right)-ac\left(b+d\right)\left(a-c\right)+ab\left(c+d\right)\left(c-b\right)\)