`ĐK: x \ne 3,x \ne 5`
`[x^2-6x+9]/[x^2-8x+15]`
`=[(x-3)^2]/[x^2-3x-5x+15]`
`=[(x-3)^2]/[(x-3)(x-5)]`
`=[x-3]/[x-5]`
=(x-3)^2/(x-3)(x-5)=(x-3)/(x-5)
\(\dfrac{x^2-6x+9}{x^2-8x+15}=\dfrac{\left(x-3\right)^2}{x^2-5x-3x+15}=\dfrac{\left(x-3\right)^2}{x\left(x-5\right)-3\left(x-5\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x-5\right)}=\dfrac{x-3}{x-5}\)
\(=\dfrac{x^2-6x+9}{x^2-8x+15}\)
\(=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x-5\right)}\)
\(=\dfrac{x-3}{x-5}\)


